1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
| import requests import os
HOST = os.getenv("API_HOST", "http://127.0.0.1") PORT = os.getenv("API_PORT", "8000") urls = { "summary": f"{HOST}:{PORT}/get_summary", "qa": f"{HOST}:{PORT}/get_response", "self": f"{HOST}:{PORT}/ask_self", "file": f"{HOST}:{PORT}/ask_whole_file", }
openai_config = { "azure_key": {your api key}, "azure_base": {your api base}, }
self_data = { "prompt": "太陽電池技術?", "info": "太陽能電池技術5塊錢", "model": "openai:gpt-3.5-turbo", "system_prompt": "", "max_input_tokens": 3000, "temperature": 0.0, "openai_config": openai_config }
file_data = { "doc_path": "docs/mic/20230317_5軸工具機因應市場訴求改變的發展態勢.pdf", "prompt": "五軸是什麼?", "chunk_size": 1000, "model": "openai:gpt-3.5-turbo", "embedding_model": "openai:text-embedding-ada-002", "system_prompt": "", "max_input_tokens": 3000, "temperature": 0.0, "openai_config": openai_config }
chat_data = { "doc_path": "docs/pns/", "prompt": "太陽電池技術?", "chunk_size": 1000, "model": "openai:gpt-3.5-turbo", "embedding_model": "openai:text-embedding-ada-002", "search_type": 'auto', "system_prompt": "", "max_input_tokens": 3000, "temperature": 0.0, "openai_config": openai_config } summary_data = { "file_path": "docs/pns/2484.txt", "model": "openai:gpt-3.5-turbo", "summary_type": "reduce_map", "summary_len": 500, "system_prompt": "", "openai_config": openai_config }
# chat_response = requests.post(urls["qa"], json=chat_data).json() # print(chat_response)
# sum_response = requests.post( # urls["summary"], # json=summary_data, # ).json()
# print(sum_response)
self_response = requests.post(urls["self"], json=self_data).json() print(self_response) file_response = requests.post(urls["file"], json=file_data).json() print(file_response)
|